1. Let $\left(x_{0}, y_{0}\right) \in E^{2}$ s.t. $x_{0}^{2}+y_{0}^{2}<4$.

If $(x, y) \in N_{\delta}\left(x_{0}, y_{0}\right)$ then $|(x, y)| \leqslant\left|\left(x-x_{0}, y-y_{0}\right)\right|+\left|\left(x_{0}, y_{0}\right)\right| \quad$ (triangle mine q)
Pick $\delta=\frac{2-\sqrt{x_{0}^{2}+y_{0}^{2}}}{2}>0$, so $\left.\mid x, y\right) \left\lvert\,<2+\frac{\sqrt{x_{0}^{2}+y_{0}^{2}}}{<2}\right.$
i.e $(x, y) \in S$.

We proved that $N_{S}\left(x_{0}, \%_{0}\right) \subset S$ so S is open
2. a) $\lim _{x \rightarrow 0} f(x, 0)=\lim _{x \rightarrow 0} \frac{x^{4}}{x^{4}}=1 \neq \lim _{y \rightarrow 0} f(0, y)=0$ so
$\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.
b) $0 \leqslant|F(x, y)-0| \leqslant\left|\frac{x^{4}}{x^{2}}\right| \leqslant x^{2} \underset{(x, y) \rightarrow 0}{\rightarrow 0}$ so $f(x, y) \rightarrow 0$ by the squeeze theorem.
c) $f(x, y)=\frac{\sin \left(x^{2}+y^{2}\right)}{\cos \left(x^{4}+y^{4}\right)} \rightarrow \cos (0)=1$

$$
\begin{align*}
\left(x_{1}\right) \rightarrow(0,0) & \cos (0)
\end{align*}=1
$$

soly the quotiontrule, $f(x, y) \rightarrow \frac{0}{1}=0$.
(x,y) $\rightarrow 0,0)$
d) $f(x, y)=\frac{x y(x+y)(y-x)(y-2 x)(y+2 x)}{x^{4}+y^{4}}$

Using $|x|,|y| \leqslant\left(x^{4}+y^{4}\right)^{1 / 4}$ one gets

$$
\begin{aligned}
& 0 \leqslant|f(x, y)| \leqslant \frac{\left(x^{4}+y^{4}\right)^{2 / 4} 2\left(x^{4}+y^{4}\right)(y / x \cdot x)(y-2 x) 3\left(x^{4}+y^{4}\right)^{1 / 4}}{x^{4}+y^{4}} \\
&=6(y-x)(y-2 x) \\
&>0 \\
&(x, y) \rightarrow(0,0)
\end{aligned}
$$

By the squeeze theorem, $f(x, y) \xrightarrow[(x, y) \rightarrow(0,0)]{0}$
e) $\lim _{x \rightarrow 0} f(x, 0)=0 \neq \lim _{x \rightarrow 0} f(x, 3 x)=\frac{3(9-1)(9-4)}{1+3^{6}}$
so does not exist
3) a) $|f(x, y)|=\frac{7 x^{6}}{x^{4}+y^{4}}$

$$
\leqslant 7 x^{2} \frac{x^{4}}{x^{4}+y^{4}} \leqslant 7 x^{2} \leqslant 7\left(x^{2}+y^{2}\right)<\varepsilon
$$

provided $x^{2}+y^{2}<\frac{\varepsilon}{7}$, ie provided $\sqrt{x^{2}+y^{2}}<\delta=\sqrt{\frac{\varepsilon}{7}}$
b)

$$
\left.\begin{array}{l}
|F(x, y)| \leq \frac{71 x 1^{3} y^{2}}{x^{4}+y^{4}} \leq 7 \frac{\left(x^{4}+y^{4}\right)^{3 / 4}\left(x^{4}+y^{4}\right)^{2 / 4}}{x^{4}+y^{4}}
\end{array}=7\left(x^{4}+y^{4}\right)^{114}\right) \text { } \begin{aligned}
& \leqslant 7\left(x^{4}+2 x^{2} y^{2}+y^{4}\right)^{114} \\
& =7\left(x^{2}+y^{2}\right)^{1 / 2} \\
\text { provided } \sqrt{x^{2}+y^{2}}<\delta=\sqrt{7} . & <\varepsilon
\end{aligned}
$$

4) As products, sums and compositions of such functions, F has continuous partial derivatives (up to any order) on the whole \mathbb{E}^{3}

$$
J f(x, y, z)=\left(\begin{array}{ccc}
2 x y^{2} e^{x^{2}} & 2 y e^{x^{2}} & -1 \\
y \sin (z) & x \sin (z) & x y \cos (z) \\
0 & e^{y} & -\sin (z)
\end{array}\right)
$$

5) a) $\frac{f(\Delta x, 0)-f(0,0)}{\Delta x}=\frac{0-0}{\Delta x}=0 \underset{\Delta x \rightarrow 0}{\rightarrow 0}$ so $\frac{\partial f}{\partial x}(9,0)=0$

$$
\frac{f(0, \Delta y)-f(0,0)}{\Delta y}=0 \underset{\substack{\Delta y \rightarrow 0}}{ } 0 \quad \text { so } \frac{\partial f}{\partial y}(0,0)=0
$$

b) $\frac{f(\Delta x, 0)-f(0,0)}{\Delta x}=\frac{\frac{(\Delta x)^{4}}{(\Delta x)^{4}}-0}{\Delta x}=\frac{1}{\Delta x} \xrightarrow[\Delta x \rightarrow 0 \pm]{ } \rightarrow \infty$ so $\frac{\partial f}{\partial x}(0,0)$ does not exist.

$$
\frac{f(0, \Delta y)-F(0,0)}{\Delta y}=\frac{\Delta x}{\Delta x}=0 \underset{\Delta y \rightarrow 0}{\overrightarrow{\Delta x}} \overrightarrow{\Delta x}_{\Delta x} \text { so } \frac{0}{ \pm} \frac{\partial f}{\Delta y}(0,0)=0 . \frac{o}{\partial x}
$$

c)

$$
\begin{aligned}
& \frac{f(\Delta x, 0)-f(0,0)}{\Delta x}=0 \underset{\Delta x \rightarrow 0}{\rightarrow 0} \text { so } \frac{\partial f(0,0) \in 0}{\partial x}: \\
& \frac{f(0, \Delta y)-f(0,0)}{\Delta y}=\frac{\frac{|\Delta y|^{5}}{(\Delta y)^{4}}-0}{\Delta y}=\frac{|\Delta y|^{5}}{(\Delta y)^{5}}=\left\{\begin{array}{l}
+1 \text { if } \Delta y>0 \\
-1 \text { if } \Delta y<0
\end{array}\right. \text { has no }
\end{aligned}
$$

limit as $\Delta y \rightarrow 0$, so $\frac{\partial f}{\partial y}(0,0)$ does not exist.
Reminder: For limits of the type $\frac{P(x, y)}{Q(x, y)}$ where P, Q are polynomials with $P(0,0)=\phi(0,0)=0$, a good rube of thumb is to look at the total degree of the dominant term of P vs the dominant term of $\mathrm{Q}\left(>\right.$ indicates hope for a 0 - limith^{\prime}, $\leqslant 0$ For non existence).
6) F has cont. portal derivatives' so is differentiable, and

$$
\begin{aligned}
& f(x+\Delta x, y+\Delta y)=f(x, y)+y^{3} \Delta x+3 x y^{2} \Delta^{\frac{\partial f}{\partial x}} \Delta y+\varepsilon_{1}(x, y, \Delta x, \Delta y) \Delta x \\
& +\varepsilon_{2}(x, y, \Delta x, \Delta y) \Delta y \\
& \begin{array}{c}
\varphi_{0}(x+\Delta x)(y+\Delta y)^{3}=x y^{3}+y^{3} \Delta x+3 x y^{2} \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y \\
11
\end{array} \\
& (x+\Delta x)\left(y^{3}+3 y^{2} \Delta y+3 y \Delta y^{2}+\Delta y^{3}\right) \\
& x y^{3}+3 x y^{2} \Delta y+\underbrace{3 x y \Delta y^{2}}_{\varepsilon_{2} \Delta x}+\Delta y^{3} x+\Delta x y^{3}+\underbrace{3 y^{2} \Delta x \Delta y+3 y \Delta y^{2} \Delta x+\Delta x \Delta y^{3}} \\
& \text { Y. H. . } \left\lvert\, \begin{array}{ll}
\varepsilon_{1}=3 y^{2} \Delta x \\
\varepsilon_{2} \Delta y+3 y \Delta y^{2}+\Delta y^{3} & \varepsilon_{1} \Delta x \\
\varepsilon_{2}=3 x y \Delta y+x \Delta y^{2} & \text { Fit and indeed, }
\end{array}\right. \\
& \varepsilon_{1} \varepsilon_{2} \rightarrow 0 . \\
& (\Delta x, 4 y) \rightarrow b_{;} \text {o) }
\end{aligned}
$$

7)

$$
\begin{aligned}
\frac{\partial z}{\partial t}(s, t) & =\frac{\partial f}{\partial x}\left(1-s^{2}-t^{2}, r^{3}+s^{3}\right) \frac{\partial x}{\partial t}+\frac{\partial F}{\partial y}\left(1-s^{2}-r^{2}, r_{1}^{3}+s^{3}\right) \frac{\partial y}{\partial t} \\
& =-2 t \frac{\partial f}{\partial x}\left(1-s^{2}-r^{2}, t^{3}+s^{3}\right)+3 t^{2} \frac{\partial f}{\partial y}\left(1-s^{2}-r^{2}, t^{2}+s^{3}\right)
\end{aligned}
$$

At $s=0,1=1$ one gets $\frac{\partial z}{\partial t}(0,1)=-2 \frac{\partial f}{\partial x}(0,1)+3 \frac{\partial F}{\partial}(0,1)$

$$
=-2 \times 8+3 \times 9=11 \text {. }
$$

when $s=1=0, \frac{\partial z}{\partial t}(0,0)=0 \ldots$
8) a) Assuming $w=w(y, z) \& x=x(y, z)$; taking $\frac{\partial}{\partial y}$ we get

$$
\left\{\begin{array}{l}
0=\frac{\partial x}{\partial y} y+x+2 z^{2} \omega \frac{\partial \omega}{\partial y} \tag{1}\\
0=\frac{\partial x}{\partial y} z+2 y \omega \frac{\partial \omega}{\partial y}+2 y \omega^{2}
\end{array}\right.
$$

Taking $z *(1)-y *(2)$ one gets

$$
\begin{aligned}
& 0=x z+2 z^{3} \omega \frac{\partial \omega}{\partial y}-2 y^{2} \omega \frac{\partial w}{\partial y}-2 y^{2} \omega^{2} \\
& \text { so } \frac{\partial \omega}{\partial y}(y, z)=\frac{2 \omega^{2} y^{2}-x z}{2 \omega\left(z^{3}-y^{2}\right)}
\end{aligned}
$$

b) observe that at $(1,0,1,1)$ the denom. up there is 0 .

Indeed, our assumption cannot be done there, because if we call

$$
\begin{aligned}
F(w, x, y, z) & =x y+z^{2} w^{2}-1 \\
G() & =x^{2}+y^{2} w^{2}-1
\end{aligned}
$$

thence has \quad there $\left(\begin{array}{cc}\frac{\partial F}{\partial w} & \frac{\partial F}{\partial x} \\ \frac{\partial G}{\partial w} & \frac{\partial G}{\partial x}\end{array}\right)=\left(\begin{array}{cc}2 \omega z^{2} & y \\ 2 w y^{2} & z\end{array}\right)=\left(\begin{array}{ll}z & 1 \\ 2 & 1\end{array}\right)$
has determinant 0 . The IFT cannot apply in these variables there.
9). On $x>0$, $f(x, y)=\frac{x^{5}}{x^{4}+y^{2}}$ and $\frac{\partial F}{\partial x}$, $\frac{\partial f}{\partial y}$ exist by diff. of a quotient whose denom. dues not cancel.

- Same on $x<0$ where $f(x, y)=\frac{-x^{5}}{x^{4}+y^{2}}$.
- At a point $(0, y)$ with $y \neq 0$

$$
\frac{f(\Delta x, y)-f(0, y)}{\Delta x}=\frac{\frac{1 \Delta x)^{5}}{(\Delta x)^{4}+y^{2}}-0}{\Delta x}=\frac{ \pm(\Delta x)^{4}}{(\Delta x)^{4}+y^{2}} \rightarrow 0 \operatorname{since} y \neq 0
$$

so there $\frac{\partial F}{\partial x}(0, y)=0$.

$$
\frac{f(0, y+\Delta y)-f(0, y)}{\Delta y}=\frac{0-0}{\Delta y}=0 \underset{\substack{\Delta y 0}}{ } \text { so } \frac{\partial f}{\partial y}(0, y)=0 \text {. }
$$

- At $(0,0): \frac{f(\Delta x, 0)-f(0,0)}{\Delta x}=\frac{\frac{1 \Delta x 1^{5}}{\Delta x 4}-0}{\Delta x}=\operatorname{sign}(\Delta x)$
does not have a limit as $\Delta x \rightarrow 0$ so $\frac{\partial F}{\gamma x}(0,0)$ does not exist.

$$
\frac{f(0, \Delta y)-f(0,0)}{\Delta y}=0 \rightarrow 0 \text { so } \frac{\partial f}{\partial y}(0,0)=0
$$

10) Find G are both E^{1}. Moreover

$$
\begin{aligned}
& \left(\begin{array}{cccc}
F_{\omega} & F_{x} & F_{y} & F_{z} \\
G_{\omega} & G_{x} & G_{y} & G_{z}
\end{array}\right)_{\mid(0,0,0,0)} \\
= & \left(\begin{array}{llll}
1+x y z \cos (\omega x y z) & 1+\omega y z \cos (\omega x y z) & 1+\omega x z \cos (\omega x y z) & 1+\omega x y \cos (\omega x y z) \\
1-x y 2 \sin (\omega x y z) & 1-\omega y z \sin (\omega x y z) & 2-\omega x z \sin (\omega+\pi z) & 2-\omega x y \sin (\omega x, z)
\end{array}\right) \\
= & \left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 2 & 2
\end{array}\right)
\end{aligned}
$$

$$
114900 \mathrm{P} \mid
$$

- Solving for $\omega \& z, \operatorname{det}\left(\begin{array}{ll}F_{\omega} & F_{y} \\ G_{\omega} & G_{y}\end{array}\right)_{I(0,0)}=\operatorname{det}\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right) \neq 0$, tho applies For $x \not x y, \quad \operatorname{det}\left(\begin{array}{ll}F_{x} & F_{y} \\ G_{x} & G_{y}\end{array}\right)_{(0,0)}=\operatorname{det}\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right) \nexists 0$, yes.

For $x \& 2, \quad \operatorname{det}\left(\begin{array}{cc}F_{x} & F_{z} \\ G_{x} & G_{z}\end{array}\right)_{10,0)}=\operatorname{det}\left(\begin{array}{cc}1 & 1 \\ 1 & 2\end{array}\right) \neq 0$, yes.
For y42, $\quad \operatorname{det}\left(\begin{array}{ll}F_{y} & F_{z} \\ G_{y} & G_{z}\end{array}\right)_{110,0}=d e t\left(\begin{array}{cc}1 & 1 \\ 2 & 2\end{array}\right)=0$, the does not apply.
11) F is ε^{1} an \mathbb{E}^{2} and $\vec{\nabla} F(x, y)=\binom{6 x y-12 x}{3 y^{2}+3 x^{2}-12 y}=\binom{0}{0}$

$$
\text { if and only if }\left\{\begin{array}{l}
6 x(y-2)=0 \\
3 y(y-4)=-3 x^{2}
\end{array}\right.
$$

Possible solutions.

$$
\begin{array}{ll}
x=0, & y=0 \text { or } 4 . \\
y=2, & -3 x^{2}=-12, \text { so } x= \pm 2 .
\end{array}
$$

$\rightarrow(0,0) ; \quad(0,4) ; \quad(2,2) ; \quad(-2,2)$

$$
H f(x, y)=\left(\begin{array}{ll}
6 y-12 & 6 x \\
6 x & 6 y-12
\end{array}\right)
$$

At $(0,0) ; \quad H f(0,0)=\left(\begin{array}{cc}-12 & 0 \\ 0 & -12\end{array}\right)$; eigenvalues are: $-12 \leq 0 \sim \quad(0,0)$ is ap ${ }^{+}$
At $(0,4) ; \quad \operatorname{HF}(0,4)=\left(\begin{array}{cc}12 & 0 \\ 0 & 12\end{array}\right)$
At $(2,2) \quad \operatorname{HF}(2,2)=\left(\begin{array}{cc}0 & 12 \\ 12 & 0\end{array}\right)=M$ ofrel.max $>0 \quad \frac{(94)}{\min }$

$$
\operatorname{det}\left(M-\lambda I_{2}\right)=\left|\begin{array}{cc}
-\lambda & 12 \\
12 & -\lambda
\end{array}\right|=\lambda^{2}-12^{2} \text {, eigenvalue are } \pm 12 \text {, }
$$

At $(-2,2), \quad H F(-2,2)=\left(\begin{array}{cc}0 & -12 \\ -12 & 0\end{array}\right)$

$$
\operatorname{det}\left(\quad-\lambda I_{2}\right)=\left|\begin{array}{cc}
-\lambda & -12 \\
-12 & -\lambda
\end{array}\right|=\lambda^{2}-12^{2} \text {, same as } \hat{\eta}
$$

