21-268 - Handout on divergence and rate of area change

Laurent Dietrich
Carnegie Mellon University, Spring 2017

1 Introduction

We saw in class, through the formula
div $\vec{v}\left(x_{0}, y_{0}\right)=$

$$
\lim _{h \rightarrow 0^{+}} \frac{1}{(2 h)^{2}}\left(\int_{y_{0}-h}^{y_{0}+h}\left(v_{1}\left(x_{0}+h, y\right)-v_{1}\left(x_{0}-h, y\right)\right) \mathrm{d} y+\int_{x_{0}-h}^{x_{0}+h}\left(v_{2}\left(x, y_{0}+h\right)-v_{2}\left(x, y_{0}-h\right)\right) \mathrm{d} x\right)
$$

and the associated picture, that the divergence measures the amount of stretch of small areas by \vec{v} around $\left(x_{0}, y_{0}\right)$.

Let's see this more precisely, by connecting it to the notion of determinant, as we saw a few weeks ago that the (absolute value of the) determinant of the Jacobian of a vector field tells us how much areas are multiplied by. We are going to see that the divergence is actually rather a rate of increase for the areas.

2 The flow of a vector field and area change

Let $\vec{v}(x, y) \in \mathbb{E}^{2}$ define a vector field. If we start from (x, y) and follow $\vec{v}(x, y)$ for a small time t, that defines a function (a flow over time)

$$
\vec{F}_{t}(x, y)=(x, y)+t \vec{v}(x, y)
$$

We know from the first lectures, that a good approximation for how much a small area R around (x_{0}, y_{0}) gets changed is to multiply R by

$$
\begin{equation*}
\left|\operatorname{det}\left(J \vec{F}_{t}\left(x_{0}, y_{0}\right)\right)\right| \tag{1}
\end{equation*}
$$

The connection is the following:

Theorem 2.1.

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{det}\left(J \vec{F}_{t}\left(x_{0}, y_{0}\right)\right)\right|_{t=0}=\operatorname{div} \vec{v}\left(x_{0}, y_{0}\right)
$$

In other words, the divergence of \vec{v} at $\left(x_{0}, y_{0}\right)$ is the initial rate of increase of the area multiplication factor of \vec{F}_{t} near $\left(x_{0}, y_{0}\right)$.

Proof.

$$
J \vec{F}_{t}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+t\left(\begin{array}{ll}
\frac{\partial v_{1}}{\partial x} & \frac{\partial v_{1}}{\partial y} \\
\frac{\partial v_{2}}{\partial x} & \frac{\partial v_{2}}{\partial y}
\end{array}\right)=\left(\begin{array}{cc}
1+t \frac{\partial v_{1}}{\partial x} & t \frac{\partial v_{1}}{\partial y} \\
t \frac{\partial v_{2}}{\partial x} & 1+t \frac{\partial v_{2}}{\partial y}
\end{array}\right)
$$

so that the determinant of the above is

$$
\left(1+t \frac{\partial v_{1}}{\partial x}\right)\left(1+t \frac{\partial v_{2}}{\partial y}\right)-t^{2}\left(\frac{\partial v_{1}}{\partial y}\right)\left(\frac{\partial v_{2}}{\partial x}\right)
$$

Taking the derivative in t and evaluating at $t=0$ it remains exactly

$$
\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y}
$$

For instance, if $\vec{v}(x, y)=(x, y)$, its divergence is everywhere 2 . Thus, for small times t the flow of \vec{v} multiplies areas by a factor $1+2 t$. On the other hand one can cook an example of a vector field with 0 divergence but such that $J F_{t}$ does not have a zero determinant, for instance by picking

$$
\vec{v}(x, y)=\left(x^{2} / 2,-x y\right)
$$

The flow of that vector field approximately multiplies areas by a factor of $1-\left(t x_{0}\right)^{2}$ near a point $\left(x_{0}, y_{0}\right)$ after a small time t, but observe that initially this factor stays very close to 1 (has value 1 and a 0 -derivative at $t=0$).

Remark 2.2. Of course, the result is still true in higher dimensions, but we do not have the necessary tool to provide a simple proof yet. It basically relies on the formula

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{det}\left(I_{n}+t M\right)_{t=0}=\operatorname{Trace}(M)
$$

