21-268 - Homework assignment week \#3

Laurent Dietrich
Carnegie Mellon University, Spring 2017, Sec. A and B

Reminder

Homework will be given on Wednesdays and due on the next Wednesday before 5 pm , to me in class or in Christopher Cox's mailbox in Wean Hall 6113 (pay attention to the arrow !). Late homework will never be accepted without a proper reason. In case of physical absence, electronic submissions by e-mail to both me your TA can be accepted. Please do not forget to write your name, andrew id and section and please use a staple if you have several sheets.

Reading

1. Proofs in the textbook that I did not do in class.

Exercises (28 pts)

1. (2 pts) Consider $f(x, y)=x^{2} y^{2}$. Find some $a(x, y), b(x, y), \epsilon_{1}(x, y, \Delta x, \Delta y)$ and $\epsilon_{2}(x, y, \Delta x, \Delta y)$ that satisfy the definition of total differential for f.
2. Consider $\vec{y}=\vec{f}(\vec{x})$ where $f_{1}\left(x_{1}, x_{2}\right)=x_{1} \cos \left(x_{2}\right)$ and $f_{2}\left(x_{1}, x_{2}\right)=x_{1} \sin \left(x_{2}\right)$.
a) (2 pts) Draw the region

$$
\left\{\vec{f}\left(x_{1}, x_{2}\right) \mid 1<x_{1}<1.1,0<x_{2}<0.1\right\}
$$

and compute its area.
Hint: first think about fixing x_{1} to 1 and vary x_{2}.
b) (2 pts) Compute $J\left(x_{1}, x_{2}\right)$, the Jacobian matrix of \vec{f} evaluated at $\left(x_{1}, x_{2}\right)$.
c) (1 pt) For $\left(x_{1}, x_{2}\right)$ near $(1,0), \vec{f}\left(x_{1}, x_{2}\right)$ is approximated (at first order) by

$$
\vec{L}\left(x_{1}, x_{2}\right)=\vec{f}(1,0)+J(1,0) \overrightarrow{d x} \quad \text { where } \quad \overrightarrow{d x}=\binom{x_{1}-1}{x_{2}-0}
$$

Draw the region

$$
\left\{\vec{L}\left(x_{1}, x_{2}\right) \mid 1<x_{1}<1.1,0<x_{2}<0.1\right\}
$$

and compute its area. Your drawing should be similar to that from part a), but not the same.
3. $(2+1 \mathrm{pts})$ Assume that $f(x, y)$ defines a function differentiable at all points and that $\frac{\partial f}{\partial x}(1,0)=5$, $\frac{\partial f}{\partial y}(1,0)=6, \frac{\partial f}{\partial x}(0,1)=8, \frac{\partial f}{\partial y}(0,1)=9$, and $\frac{\partial f}{\partial x}(1,1)=11, \frac{\partial f}{\partial y}(1,1)=12$. Let $z=f\left(1-t^{2}, t^{3}\right)$ and find

$$
\left.\frac{d z}{d t}\right|_{t=1} \quad \text { and }\left.\quad \frac{d z}{d t}\right|_{t=0}
$$

The vertical bars on the right mean "evaluated at".
4. (4 pts) Let $f(x, y)$ define a differentiable function and let $z=f(x, y)$ with $x=r \cos (\theta)$ and $y=r \sin (\theta)$. Show that

$$
\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}=\left(\frac{\partial z}{\partial r}\right)^{2}+r^{-2}\left(\frac{\partial z}{\partial \theta}\right)^{2}
$$

5. a) $(2+1 \mathrm{pts})$ Let

$$
\binom{y_{1}}{y_{2}}=\vec{y}=\vec{f}(\vec{x})=\binom{x_{1}^{2}-x_{2}^{2}}{2 x_{1} x_{2}} \quad \text { where } \quad \vec{x}=\binom{x_{1}}{x_{2}} .
$$

Find $\vec{y}_{\vec{x}}$ and $\frac{\partial\left(y_{1}, y_{2}\right)}{\partial\left(x_{1}, x_{2}\right)}=\operatorname{det}\left(\vec{y}_{\vec{x}}\right)$.
b) $(2+1+1 \mathrm{pts})$ Define \vec{x} as a function of \vec{y} implicitly in $\vec{y}=\vec{f}(\vec{x})$. Find some equations that $\frac{\partial x_{1}}{\partial y_{1}}$ and $\frac{\partial x_{2}}{\partial y_{1}}$ must satisfy in that way and then solve them for $\frac{\partial x_{1}}{\partial y_{1}}$ and $\frac{\partial x_{2}}{\partial y_{1}}$. In the same manner find $\frac{\partial x_{1}}{\partial y_{2}}$ and $\frac{\partial x_{2}}{\partial y_{2}}$. Find $\vec{x}_{\vec{y}}$ and $\frac{\partial\left(x_{1}, x_{2}\right)}{\partial\left(y_{1}, y_{2}\right)}$.
c) (1 pt) Substitute your results from parts a and b and find $\vec{y}_{\vec{x}} \vec{x}_{\vec{y}}$ (matrix multiplication) and $\frac{\partial\left(y_{1}, y_{2}\right)}{\partial\left(x_{1}, x_{2}\right)} \frac{\partial\left(x_{1}, x_{2}\right)}{\partial\left(y_{1}, y_{2}\right)}$.
6. Let

$$
F(x, y)=x^{2}+y^{2}-\cos (y)
$$

and consider solving $F(x, y)=0$ near the point $(x, y)=(1,0)$.
a) (2 pts) For solving for x as a function of y, show that the hypotheses of the implicit function theorem are satisfied.
b) (2 pt) For solving for y as a function of x, show that the hypotheses of the implicit function theorem are not satisfied.
c) $(2 \mathrm{pt})$ Suppose that there is a differentiable function $Y(x)$ with $Y(1)=0$ and

$$
F(x, Y(x))=0
$$

for x near 1 . Derive a contradiction from this.

