21-241 Matrices and Linear Transformations Lecture 3 Midterm \#1 Solution

October 3, 2016

1. (a) (8 points) Given $a, b, c \in \mathbb{R}$, solve

$$
(S)\left\{\begin{aligned}
x+y+z & =a \\
x-y+z & =b \\
2 y-z & =c
\end{aligned}\right.
$$

by Gauß-Jordan elimination (that is, using reduced row echelon form).

Proof. The augmented matrix of (S) is

$$
\left[\begin{array}{ccc|c}
1 & 1 & 1 & a \\
1 & -1 & 1 & b \\
0 & 2 & -1 & c
\end{array}\right]
$$

which can be row reduced to

$$
\left[\begin{array}{ccc|c}
\mathbf{1} & 0 & 0 & (3 b+2 c-a) / 2 \\
0 & \mathbf{1} & 0 & (a-b) / 2 \\
0 & 0 & \mathbf{1} & a-b-c
\end{array}\right]
$$

This means that there is one and only one solution :

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
(3 b+2 c-a) / 2 \\
(a-b) / 2 \\
a-b-c
\end{array}\right]
$$

(b) (4 points) Show that

$$
\mathbb{R}^{3}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]\right\}
$$

Proof. Let $a, b, c \in \mathbb{R}^{3}$. We wish to find a linear combination

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=x\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+y\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]+z\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]
$$

This is exactly the column-by-column approach of the above system. We just saw that there is a solution. This is valid for all $a, b, c \in \mathbb{R}$, which means that any vector in \mathbb{R}^{3} can be expressed as a combination of $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$, i.e.

$$
\mathbb{R}^{3}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]\right\}
$$

2. Let $\left(\mathcal{P}_{1}\right)$ resp. $\left(\mathcal{P}_{2}\right)$ be planes in \mathbb{R}^{3} defined by equations in normal forms

$$
n_{1} \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=1 \quad n_{2} \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=-2
$$

where $n_{1}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ and $n_{2}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
(a) (4 points) Without doing any computation, discuss what the intersection $\left(\mathcal{P}_{1}\right) \cap\left(\mathcal{P}_{2}\right)$ is geometrically (justify your answer).

Proof. As n_{1} and n_{2} are not scalar multiples of one another, the planes do not have the same orientation. Therefore they have to intersect along a line.
(b) (8 points) Compute this intersection and write it as an affine space.

Proof. The vectors $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ lying on the intersection have to satisfy both plane equations.
The augmented matrix associated to that system is

$$
\left[\begin{array}{ccc|c}
1 & 2 & 0 & 1 \\
1 & 1 & 1 & -2
\end{array}\right]
$$

which row reduces to

$$
\left[\begin{array}{ccc|c}
\mathbf{1} & 0 & 2 & -5 \\
0 & \mathbf{1} & -1 & 3
\end{array}\right]
$$

meaning that the set of solution writes

$$
\left\{\left.\left[\begin{array}{c}
-5-2 z \\
3+z \\
z
\end{array}\right] \right\rvert\, z \in \mathbb{R}\right\}=\left[\begin{array}{c}
-5 \\
3 \\
0
\end{array}\right]+\operatorname{span}\left\{\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]\right\}
$$

3. (8 points) Find all possible linear combinations of $\left[\begin{array}{l}3 \\ 2 \\ 4\end{array}\right]$ and $\left[\begin{array}{l}-2 \\ -1 \\ -3\end{array}\right]$ that are equal to $\left[\begin{array}{l}-1 \\ -1 \\ -1\end{array}\right]$.

Proof. We are looking for $x, y \in \mathbb{R}$ such that

$$
x\left[\begin{array}{l}
3 \\
2 \\
4
\end{array}\right]+y\left[\begin{array}{c}
-2 \\
-1 \\
3
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right]
$$

This is a linear system whose augmented matrix is

$$
\left[\begin{array}{ll|l}
3 & -2 & -1 \\
2 & -1 & -1 \\
4 & -3 & -1
\end{array}\right]
$$

It row reduces to

$$
\left[\begin{array}{cc|c}
\mathbf{1} & 0 & -1 \\
0 & \mathbf{1} & -1 \\
0 & 0 & 0
\end{array}\right]
$$

meaning that there is one and only one solution : $x=y=-1$.
4. We define the trace of a square $n \times n$ matrix to be the sum of the diagonal terms :

$$
\operatorname{tr}: \mathcal{M}_{n n}(\mathbb{R}) \rightarrow \mathbb{R} \quad A \mapsto \sum_{i=1}^{n} a_{i i}
$$

(a) (5 points) Prove that tr is a linear transformation.

Proof. Let $A, B \in \mathcal{M}_{n n}(\mathbb{R})$ and $\lambda \in \mathbb{R}$.

$$
\begin{gathered}
\operatorname{tr}(A+B)=\sum_{i=1}^{n}(A+B)_{i i}=\sum_{i=1}^{n} a_{i i}+b_{i i}=\sum_{i=1}^{n} a_{i i}+\sum_{i=1}^{n} b_{i i}=\operatorname{tr}(A)+\operatorname{tr}(B) \\
\\
\operatorname{tr}(\lambda A)=\sum_{i=1}^{n}(\lambda A)_{i i}=\sum_{i=1}^{n} \lambda a_{i i}=\lambda \sum_{i=1}^{n} a_{i i}=\lambda \operatorname{tr}(A)
\end{gathered}
$$

(b) (2 points) Let $\left(\alpha_{i j}\right)$ denote a family of real numbers indexed by $1 \leq i, j \leq n$. Explain briefly why

$$
\sum_{i=1}^{n}\left(\sum_{j=1}^{n} \alpha_{i j}\right)=\sum_{j=1}^{n}\left(\sum_{i=1}^{n} \alpha_{i j}\right) .
$$

Proof. By commutativity of the addition, the order of the two Σ symbols does not matter since in the end all of the $n^{2} \alpha_{i j}$ terms are being summed up.
(c) (6 points) Prove that for all $A, B \in \mathcal{M}_{n n}(\mathbb{R}), \operatorname{tr}(A B)=\operatorname{tr}(B A)$. Hint: use the above identity.

Proof. Let $1 \leq i \leq n$. By the product formula

$$
(A B)_{i i}=\sum_{k=1}^{n} a_{i k} b_{k i}
$$

so that

$$
\operatorname{tr}(A B)=\sum_{i=1}^{n}\left(\sum_{k=1}^{n} a_{i k} b_{k i}\right)
$$

Calling $\alpha_{i k}=a_{i k} b_{k i}$ we can apply the above identity to get

$$
\operatorname{tr}(A B)=\sum_{k=1}^{n}\left(\sum_{i=1}^{n} a_{i k} b_{k i}\right)=\sum_{k=1}^{n}\left(\sum_{i=1}^{n} b_{k i} a_{i k}\right)=\sum_{k=1}^{n}(B A)_{k k}=\operatorname{tr}(B A)
$$

(d) (5 points) Find examples of matrices such that $\operatorname{tr}(A B C) \neq \operatorname{tr}(A C B)$.

Proof. The idea is to find matrices such that $A B C$ and $A C B$ are different enough so that the sum of their diagonal terms differ. We saw some examples of non-commutative matrix products in class. Inspired by these we can cook:

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad B=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \quad C=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

We have $A B C=A$ which has trace 1 but $A C B=0$ which has trace 0 .

Remark. One can prove that $t r$ is invariant under cyclic permutations, that is

$$
\operatorname{tr}\left(A_{1} A_{2} \cdots A_{n}\right)=\operatorname{tr}\left(A_{k} A_{k+1} \cdots A_{n} A_{1} \cdots A_{k-1}\right)
$$

for all $1 \leq k \leq n$. Observe that $A C B$ is not a cyclic permutation of $A B C$.

