21-241 - Handout on an introduction to eigenvalues

Laurent Dietrich
Carnegie Mellon University, Fall 2016, Sec. F and G

1 The Fibonacci sequence

Let $F_{0}=0, F_{1}=1$ and define a recurring sequence by

$$
\forall n \in \mathbb{N}^{*}, F_{n+1}=F_{n}+F_{n-1} .
$$

This is the celebrated Fibonacci sequence $0,1,1,2,3,5,8,13, \ldots$. Can we compute the value of F_{n} for all $n \in \mathbb{N}$ without doing the whole summation? Observe that this recurrence relation can be written as follows:

$$
\left[\begin{array}{c}
F_{n+1} \\
F_{n}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
F_{n} \\
F_{n-1}
\end{array}\right]=A\left[\begin{array}{c}
F_{n} \\
F_{n-1}
\end{array}\right]
$$

More precisely it is encoded in the first row of this equality, and the second one just states $F_{n}=F_{n}$. The advantage of this formulation is the following

$$
\left[\begin{array}{c}
F_{n+1} \\
F_{n}
\end{array}\right]=A\left[\begin{array}{c}
F_{n} \\
F_{n-1}
\end{array}\right]=\cdots=A^{n}\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

So that if one can compute A^{n}, one can compute F_{n}. This is where eigenvalues and eigenvectors appear.

Call

$$
\lambda_{1}=\frac{1+\sqrt{5}}{2} \quad \lambda_{2}=\frac{1-\sqrt{5}}{2} \quad S=\left[\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
1 & 1
\end{array}\right] \quad D=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
$$

The λ are eigenvalues of A and the columns of S are associated eigenvectors. By the end of the chapter, you will be able to find these by yourselves. Now observe that

$$
A=S D S^{-1}
$$

So $A^{2}=S D S^{-1} S D S^{-1}=S D^{2} S^{-1}$. Similarly,

$$
A^{n}=S D^{n} S^{-1}
$$

And the $n^{\text {th }}$ power of a diagonal matrix is easy to compute. Exercise: check that this allows you to compute

$$
F_{n}=\frac{\lambda_{1}^{n}-\lambda_{2}^{n}}{\lambda_{1}-\lambda_{2}}=\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}}
$$

2 Other applications

Eigenvalues and eigenvectors are very natural objects. An eigenvector of a linear transformation (and by extension of a matrix) is a vector whose direction does not change when transformed. The associated eigenvalue is the length multiplier. For instance, the axis of a rotation is an eigenvector for it and the eigenvalue is 1 . Due to their nature and to their deep mathematical meaning, they appear everywhere. Here is a non-exhaustive list of examples where they are found important.

- Mechanics: finding the principal axes of a body and associated moments of inertia is exactly finding eigenvectors and eigenvalues of a matrix.
- Physics, chemistry: coupled systems of linear differential equations (for instance to describe concentrations of several chemicals reacting) may be solved by diagonalization (i.e. exactly what we did above).
- Data analysis: Principal component analysis is an application of diagonalization. Google's Pagerank algorithm looks for specific eigenvalues of very large matrices.
- Economics: Leontief's model of a government's economy looks for equilibria by investigating eigenvalues.

