21-241 - Handout on bases and dimension

Laurent Dietrich
Carnegie Mellon University, Fall 2016, Sec. F and G

1 Introduction

We saw in class how to reduce a spanning set to a basis by using row reduction. Thus, provided that we have a spanning set with finitely many vectors, we can find a basis for any subspace of \mathbb{R}^{n}. The aim of this handout is twofold:

1. prove that every subspace of \mathbb{R}^{n} can be spanned by finitely many vectors
2. prove that any two bases of a same subspace of \mathbb{R}^{n} have the same number of vectors: we call it the dimension of the subspace.

2 Existence of bases

In this section we prove item 1. More precisely, we give an algorithm that finds a basis for any subspace of \mathbb{R}^{n}.

Lemma 2.1. A linearly independent set of vectors in \mathbb{R}^{n} cannot have more than n vectors.

Proof. Let $\left\{v_{1}, \cdots, v_{m}\right\}$ be linearly independent and assume $m>n$. Then

$$
\left[\begin{array}{lll}
v_{1} & \cdots & v_{m}
\end{array}\right]
$$

has more columns than rows, so when reducing

$$
\left[\begin{array}{lll|c}
& & & 0 \\
v_{1} & \cdots & v_{m} & \vdots \\
& & & 0
\end{array}\right]
$$

to reduced row echelon form one necessarily gets at least one free variable (i.e. one column with no leading 1 , since we cannot have m leading 1 because there are only n rows). Thus, the above system has (infinitely many) non-zero solutions. This is in contradiction with the linear independence. So we have $m \leq n$.

Theorem 2.2. Let $S \subseteq \mathbb{R}^{n}$ be a subspace. Then there exists a basis for S with at most n vectors.

Proof. We first evacuate the case of the zero space. If $S=\{0\}$, then $B=\varnothing$ spans S in the sense that 0 (the only vector in S) is the linear combination of nothing (the sum of nothing is 0). It is clearly linearly independent.

Now if $S \neq\{0\}$, pick a non-zero $v_{1} \in S$. Since $v_{1} \neq 0,\left\{v_{1}\right\}$ is linearly independent. If it spans S, it is a basis and we stop here. Otherwise we can find some $v_{2} \in S \backslash$ span $\left\{v_{1}\right\}$. Since $v_{2} \notin$ span $\left\{v_{1}\right\},\left\{v_{1}, v_{2}\right\}$ is linearly independent. If it spans S , it is a basis and we stop here. Otherwise we can find a $v_{3} \in S \backslash \operatorname{span}\left\{v_{1}, v_{2}\right\} \ldots$ In this while loop, $\left\{v_{1}, \cdots, v_{k}\right\}$ being linearly independent is a loop invariant, i.e. it is always true. Thus the algorithm has to stop before or at n steps, thanks to Lemma 2.1

3 Dimension

Theorem 3.1. Let $S \subseteq \mathbb{R}^{n}$ be a subspace. Any two bases for S have the same number of vectors. We call this number the dimension of S, dim S.

Proof. Let $B=\left\{u_{1}, \cdots u_{r}\right\}$ and $C=\left\{v_{1}, \cdots v_{s}\right\}$ be bases for S. Assume without loss of generality that $r<s$. We look for a contradiction by exhibiting a linear dependance relation in C.

$$
\begin{aligned}
& c_{1} v_{1}+\cdots+c_{s} v_{s}=0 \\
\Leftrightarrow & c_{1}\left(a_{11} u_{1}+\cdots+a_{1 r} u_{r}\right)+\cdots+c_{s}\left(a_{s 1} u_{1}+\cdots+a_{s r} u_{r}\right)=0
\end{aligned}
$$

for some family of scalars $\left(a_{i j}\right)$ since B spans S. We regroup these terms along the u_{i} :

$$
\begin{aligned}
& c_{1} v_{1}+\cdots+c_{s} v_{s}=0 \\
\Leftrightarrow & \left(a_{11} c_{1}+\cdots+a_{s 1} c_{s}\right) u_{1}+\cdots+\left(a_{1 r} c_{1}+\cdots+a_{s r} c_{s}\right) u_{r}=0
\end{aligned}
$$

And since B is also linearly independent, the above equality happens if and only if each parentheses equals to zero:

$$
c_{1} v_{1}+\cdots+c_{s} v_{s}=0 \Leftrightarrow\left\{\begin{array}{l}
a_{11} c_{1}+\cdots+a_{s 1} c_{s}=0 \\
\vdots \\
a_{1 r} c_{1}+\cdots+a_{s r} c_{s}=0
\end{array}\right.
$$

This is a system of linear equations with unknowns the c_{i}, moreover since $s>r$ it has more columns than rows, so there is necessarily a free variable and thus (infinitely many) non-zero solutions, i.e. non-trivial dependence relations in C. This is a contradiction with the fact that C is linearly independent. Thus, $r \geq s$. Conversely by exhanging the role of B and C in the first place we get $s \geq r$, so that $s=r$.

Remark. In addition to Lemma 2.1 recalled below, here are a few good things to know that become clearer now:

- a linearly independent set in a subspace of dimension k cannot have more than k vectors
- a spanning set for a subspace of dimension k cannot have less than k vectors
- a linearly independent set cannot contain the 0 vector.

