21-241 - Solution to Homework assignment week \#6

Laurent Dietrich
Carnegie Mellon University, Fall 2016, Sec. F and G

1 Standard basis of $\mathcal{M}_{n n}(\mathbb{R})$

1. The product formula yields

$$
\left(E_{i j} E_{k l}\right)_{r s}=\sum_{q=1}^{n}\left(E_{i j}\right)_{r q}\left(E_{k l}\right)_{q s}
$$

If $r \neq i$, then in each term of this sum the first factor is zero, so the sum is zero. If $s \neq l$, the same happens with the second factor.
2. So the only possibly non-zero entry of $E_{i j} E_{k l}$ is

$$
\left(E_{i j} E_{k l}\right)_{i l}=\sum_{q=1}^{n}\left(E_{i j}\right)_{i q}\left(E_{k l}\right)_{q l}
$$

But each term of this sum is zero except when $q=j=k$. So if $j \neq k$, this entry is 0 as well and if $j=k$, there is only one non-zero term in this sum which is $1 \times 1=1$. So in the end,

$$
\left(E_{i j} E_{k l}\right)_{i l}=\delta_{j k}
$$

3. In the end we can conclude that the matrix $E_{i j} E_{k l}$ has only one possible non-zero entry at index (i, l) and that it is 1 iff $j=k$ and 0 otherwise. That is exactly :

$$
E_{i j} E_{k l}=\delta_{j k} E_{i l}
$$

2 The inverse of an elementary matrix

We assume that $i \neq j$, otherwise C is just I_{n} and B is just the same as A with λ replaced by $\lambda+1$. We also assume $\lambda \neq 0$ otherwise A is not invertible.
1.

$$
C=I_{n}-E_{i i}-E_{j j}+E_{i j}+E_{j i}=\left(\sum_{k=1, k \neq i, k \neq j}^{n} E_{k k}\right)+E_{i j}+E_{j i}
$$

2. A corresponds to $R_{i} \leftarrow \lambda R_{i}$. B corresponds to $R_{j} \leftarrow R_{j}+\lambda R_{i}$. C corresponds to $R_{i} \leftrightarrow R_{j}$.
3. In the light of elementary row operations and their reverse operations, I propose

$$
A^{\prime}=I_{n}+(1 / \lambda-1) E_{i i}
$$

Indeed, observe that

$$
\begin{aligned}
A A^{\prime} & =\left(I_{n}+(\lambda-1) E_{i i}\right)\left(I_{n}+(1 / \lambda-1) E_{i i}\right) \\
& =I_{n}+(1 / \lambda-1) E_{i i}+(\lambda-1) E_{i i}+(\lambda-1)(1 / \lambda-1) E_{i i} E_{i i} \\
& =I_{n}+1 / \lambda E_{i i}+\lambda E_{i i}-2 E_{i i}+E_{i i}-\lambda E_{i i}-1 / \lambda E_{i i}+E_{i i} \\
& =I_{n}
\end{aligned}
$$

since $E_{i i} E_{i i}=E_{i i}$ by the formula proved in Exercise 1. Since $A A^{\prime}=I_{n}, A^{\prime}$ is the inverse of A.
4. Again, in the light of elementary operations I propose $B^{\prime}=I_{n}-\lambda E_{i j}$ and $C^{\prime}=C$. Indeed,

$$
\begin{aligned}
B B^{\prime} & =\left(I_{n}+\lambda E_{i j}\right)\left(I_{n}-\lambda E_{i j}\right) \\
& =I_{n}-\lambda E_{i j}+\lambda E_{i j}-\lambda^{2} E_{i j} E_{i j} \\
& =I_{n}
\end{aligned}
$$

since $E_{i j} E_{i j}=0$ by the formula proved in Exercise 1 , since $i \neq j$.

$$
C C=\left(\left(\sum_{k=1, k \neq i, k \neq j}^{n} E_{k k}\right)+E_{i j}+E_{j i}\right)\left(\left(\sum_{k=1, k \neq i, k \neq j}^{n} E_{k k}\right)+E_{i j}+E_{j i}\right)
$$

Since $k \neq i$ and $k \neq j$ in the sums, there is no cross terms between the terms in the sum and the two other terms. Moreover since $i \neq j$ just like above, $E_{i j}^{2}=E_{j i}^{2}=0$. So the only terms left are

$$
\begin{aligned}
C C & =\left(\sum_{k=1, k \neq i, k \neq j}^{n} E_{k k}\right)+E_{i j} E_{j i}+E_{j i} E_{i j} \\
& =\left(\sum_{k=1, k \neq i, k \neq j}^{n} E_{k k}\right)+E_{i i}+E_{j j} \\
& =I_{n} .
\end{aligned}
$$

