21-241 - Solution to Homework assignment week \#5
 Laurent Dietrich
 Carnegie Mellon University, Fall 2016, Sec. F and G

Ex 1

1. Let us prove that for all $n \times n$ matrices $A,\left(A^{T}\right)^{T}=A$.

Fix $1 \leq i, j \leq n$. Then by definition of transpose $\left(\left(A^{T}\right)^{T}\right)_{i j}=\left(A^{T}\right)_{j i}=A_{i j}$. This is true for all $1 \leq i, j \leq n$ so $\left(A^{T}\right)^{T}=A$.
2. Similarly, $(\lambda A)_{i j}^{T}=(\lambda A)_{j i}=\lambda A_{j i}=\lambda\left(A^{T}\right)_{i j}$
3. Similarly, $(A+B)_{i j}^{T}=(A+B)_{j i}=A_{j i}+B_{j i}=A_{i j}^{T}+B_{i j}^{T}=\left(A^{T}+B^{T}\right)_{i j}$.

Ex 2

1. We obtain $B^{2}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $B^{3}=0$.
2. We have $A=I_{3}+B$.
3. $A^{n}=\left(I_{3}+B\right)^{n}$. Now, since I_{3} and B commute, that is, $I_{3} B=B I_{3}$, we are allowed to use Newton's binomial formula to get for all $n \geq 2$

$$
A^{n}=\sum_{k=0}^{n}\binom{n}{k} B^{k} I_{3}^{n-k}=\sum_{k=0}^{n}\binom{n}{k} B^{k}=\binom{n}{0} B^{0}+\binom{n}{1} B^{1}+\binom{n}{2} B^{2}
$$

since all the next terms are 0 by the above. This yields

$$
A^{n}=I_{3}+n B+\frac{n(n-1)}{2} B^{2}=\left[\begin{array}{ccc}
1 & n & n(n+1) / 2 \\
0 & 1 & n \\
0 & 0 & 1
\end{array}\right]
$$

