21-241 - Solution to Homework assignment week \#4

Laurent Dietrich
Carnegie Mellon University, Fall 2016, Sec. F and G

1 Exercises

1. Let a, b be any real numbers and

$$
(S)\left\{\begin{aligned}
x+y & =a \\
2 x-3 y & =b
\end{aligned}\right.
$$

Solve (S). Rewrite (S) using the column-by-column approach. Interpret the results.
2. In the following, determine whether W is a subspace of V.
i) $V=\mathbb{R}^{3}, W=\left\{\left.\left[\begin{array}{c}x \\ y \\ x+y+1\end{array}\right] \right\rvert\, x, y \in \mathbb{R}\right\}$
ii) $V=\mathcal{M}_{n n}(\mathbb{R}), W$ is the subset of diagonal matrices, that is, matrices with non-zero entries only on the diagonal (the one from top-left to bottom-right).
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be linear and such that

$$
T\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right] \text { and } T\left[\begin{array}{c}
1 \\
-3
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]
$$

Can you compute $T\left[\begin{array}{l}a \\ b\end{array}\right]$ for any $a, b \in \mathbb{R}$ (justify your answer)? If yes, do so.
4. Find two matrices A and B such that $(A+B)^{2} \neq A^{2}+2 A B+B^{2}$. When is this relation actually satisfied ?
5. Prove Theorem 1)v) from Chapter 5 . That is, if A is any $m \times n$ matrix then

$$
I_{m} A=A=A I_{n}
$$

2 Solution

1. One can reduce system $\left(R_{2} \leftarrow R_{2}-2 R_{1}\right)$ and see that it has only one solution

$$
x=\frac{3 a+b}{5} \quad y=\frac{2 a-b}{5}
$$

Using the column-by-column approach, (S) reads

$$
x\left[\begin{array}{l}
1 \\
2
\end{array}\right]+y\left[\begin{array}{c}
1 \\
-3
\end{array}\right]=\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

We just saw that this problem has a unique solution no matter what a and b are : this means that $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -3\end{array}\right]$ span $\mathbb{R}^{2} \cdot\left[\begin{array}{l}1 \\ \hline\end{array}\right.$
2. i) W is not a subspace since the 0 -vector is not in it.
ii) W is a subspace : just observe that the zero-matrix is diagonal and that the sum of two diagonal matrices as well as any scalar multiple of a diagonal matrix stay diagonal. ${ }^{2}$
3. We saw in Exercise 1 that any $\left[\begin{array}{l}a \\ b\end{array}\right]$ can be computed as a (unique) linear combination of $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -3\end{array}\right]$. By linearity, we can then compute any $T\left[\begin{array}{l}a \\ b\end{array}\right]$. We get

$$
T\left[\begin{array}{l}
a \\
b
\end{array}\right]=T\left(\frac{3 a+b}{5}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\frac{2 a-b}{5}\left[\begin{array}{c}
1 \\
-3
\end{array}\right]\right)=\frac{3 a+b}{5}\left[\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right]+\frac{2 a-b}{5}\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]
$$

4. We can use

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad B=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

Observe that

$$
(A+B)^{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \quad A^{2}+2 A B+B^{2}=\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]
$$

We can actually compute

$$
(A+B)^{2}=A^{2}+A B+B A+B^{2}
$$

[^0]so the equality holds if and only if $A B+B A=2 A B$, i.e. iff
$$
A B=B A
$$

That is, when A and B commute. More generally, the binomial theorem holds for matrices if and only if they commute.
5. Let A be a $m \times n$ matrix and let $1 \leq i \leq m, 1 \leq j \leq n$. We can compute the product $I_{m} A$ which is a $m \times n$ matrix as well and we have

$$
\left(I_{m} A\right)_{i j}=\sum_{k=1}^{m}\left(I_{m}\right)_{i k} A_{k j}
$$

But observe that $\left(I_{m}\right)_{i k}=1$ if and only if $i=k$ and is $=0$ otherwise. Thus, only the term $k=i$ remains in the sum, so

$$
\left(I_{m} A\right)_{i j}=A_{i j}
$$

This is valid for all $1 \leq i \leq m, 1 \leq j \leq n$ so this means that $I_{m} A=A$.
The proof for $A I_{n}$ is completely similar.

[^0]: ${ }^{1}$ And even more : not only they span it but there is a unique linear combination for each vector. We say that these two vectors form a basis of \mathbb{R}^{2} (see later in class).
 ${ }^{2}$ Write it down : outside the diagonal one gets only $[A+B]_{i j}=a_{i j}+b_{i j}=0+0=0$ if $i \neq j$ and $[\lambda A]_{i j}=\lambda a_{i j}=\lambda \times 0=0$ if $i \neq j$

