21-241 - Solution to Homework assignment week \#11

Laurent Dietrich
Carnegie Mellon University, Fall 2016, Sec. F and G

Exercises

Ex 1

1. The characteristic polynomial of A is

$$
\operatorname{det}\left(A-\lambda I_{2}\right)=(a-\lambda)(d-\lambda)-b c=\lambda^{2}-(a+d) \lambda+a d-b c .
$$

The discriminant of this second order polynomial is

$$
\Delta=(a+d)^{2}-4(a d-b c)=a^{2}+2 a d+d^{2}-4 a d+4 b c=(a-d)^{2}+4 b c
$$

If this quantity is positive, we have two distinct eigenvalues, so A is diagonalizable. If it is negative, we have no real eigenvalue so A is not.
2. $A=I_{2}$ satisfies $\Delta=0$ and is diagonalizable (it is diagonal !).
$A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ satisfies $\Delta=0$ but is not diagonalizable (it has only 1 as eigenvalue so it would be similar to I_{2}, but we know that only I_{2} is similar to I_{2}. Actually what happens is that 1 is of geometrical multiplicity only 1 but algebraic multiplicity 2).

Ex 2

(a) Let us write $A=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$ a 2×2 orthogonal matrix. We know that $\left[\begin{array}{l}a \\ b\end{array}\right]$ and $\left[\begin{array}{l}c \\ d\end{array}\right]$ are orthogonal and

$$
\begin{align*}
a^{2}+b^{2} & =1 \tag{1}\\
c^{2}+d^{2} & =1 \tag{2}
\end{align*}
$$

In \mathbb{R}^{2}, the direction orthogonal to $\left[\begin{array}{l}a \\ b\end{array}\right]$ is spanned by $\left[\begin{array}{c}-b \\ a\end{array}\right]$, so there exists λ such that $\left[\begin{array}{l}c \\ d\end{array}\right]=\lambda\left[\begin{array}{c}-b \\ a\end{array}\right]$. But by using (1)-(2) we see that $\lambda^{2}=1$ so $\lambda= \pm 1$.
(b) (11) says that $\left[\begin{array}{l}a \\ b\end{array}\right]$ lies on the trigonometric circle, i.e. there exists $0 \leq \theta<2 \pi$ such that $\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}\cos \theta \\ \sin \theta\end{array}\right]$. This precisely gives that $A=R$ or $A=S$.
3. $S\left[\begin{array}{c}\cos (\theta / 2) \\ \sin (\theta / 2)\end{array}\right]=\left[\begin{array}{c}\cos (\theta / 2) \\ \sin (\theta / 2)\end{array}\right]$, so $\left[\begin{array}{c}\cos (\theta / 2) \\ \sin (\theta / 2)\end{array}\right]$ is an eigenvector associated to the eigenvalue 1 for $S: S$ does not change $\left[\begin{array}{c}\cos (\theta / 2) \\ \sin (\theta / 2)\end{array}\right]$.
4.

- R is the rotation by angle θ.
- Sisthe symmetry with respect fo the $\left[\begin{array}{l}\mathrm{Co} \mathrm{O}_{2} \\ \mathrm{SnOl}\end{array}\right]$ axis.

