21-241 – Solution to Homework assignment week #11

Laurent Dietrich Carnegie Mellon University, Fall 2016, Sec. F and G

Exercises

$\mathbf{Ex} \ \mathbf{1}$

1. The characteristic polynomial of A is

$$\det(A - \lambda I_2) = (a - \lambda)(d - \lambda) - bc = \lambda^2 - (a + d)\lambda + ad - bc$$

The discriminant of this second order polynomial is

$$\Delta = (a+d)^2 - 4(ad-bc) = a^2 + 2ad + d^2 - 4ad + 4bc = (a-d)^2 + 4bc$$

If this quantity is positive, we have two distinct eigenvalues, so A is diagonalizable. If it is negative, we have no real eigenvalue so A is not.

2. $A = I_2$ satisfies $\Delta = 0$ and is diagonalizable (it is diagonal !).

 $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ satisfies $\Delta = 0$ but is not diagonalizable (it has only 1 as eigenvalue so it would be similar to I_2 , but we know that only I_2 is similar to I_2 . Actually what happens is that 1 is of geometrical multiplicity only 1 but algebraic multiplicity 2).

Ex 2

3.

(a) Let us write $A = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$ a 2×2 orthogonal matrix. We know that $\begin{bmatrix} a \\ b \end{bmatrix}$ and $\begin{bmatrix} c \\ d \end{bmatrix}$ are orthogonal and

$$a^2 + b^2 = 1 (1)$$

$$c^2 + d^2 = 1 (2)$$

In
$$\mathbb{R}^2$$
, the direction orthogonal to $\begin{bmatrix} a \\ b \end{bmatrix}$ is spanned by $\begin{bmatrix} -b \\ a \end{bmatrix}$, so there exists λ such that $\begin{bmatrix} c \\ d \end{bmatrix} = \lambda \begin{bmatrix} -b \\ a \end{bmatrix}$. But by using (1)-(2) we see that $\lambda^2 = 1$ so $\lambda = \pm 1$.
(b) (1) says that $\begin{bmatrix} a \\ b \end{bmatrix}$ lies on the trigonometric circle, i.e. there exists $0 \le \theta < 2\pi$ such that $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$. This precisely gives that $A = R$ or $A = S$.
 $S \begin{bmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{bmatrix} = \begin{bmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{bmatrix}$, so $\begin{bmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{bmatrix}$ is an eigenvector associated to the eigenvalue 1

for S: S does not change $\begin{bmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{bmatrix}$.

4.